skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 10:00 PM ET on Friday, February 6 until 10:00 AM ET on Saturday, February 7 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Kumar, A"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We present a novel methodology for crafting effective public messages by combining large language models (LLMs) and conjoint analysis. Our approach personalizes messages for diverse personas – context-specific archetypes representing distinct attitudes and behaviors – while reducing the costs and time associated with traditional surveys. We tested this method in public health contexts (e.g., COVID-19 mandates) and civic engagement initiatives (e.g., voting). A total of 153 distinct messages were generated, each composed of components with varying levels, and evaluated across five personas tailored to each context. Conjoint analysis identified the most effective message components for each persona, validated through a study with 2,040 human participants. This research highlights LLMs’ potential to enhance public communication, providing a scalable, cost-effective alternative to surveys, and offers new directions for HCI, particularly for the design of adaptive, user-centered, persona-driven interfaces and systems. 
    more » « less
  2. We present the analysis of the luminous Type II Supernova (SN) 2021tsz, which exploded in a low-luminosity galaxy. It reached a peak magnitude of −18.88 ± 0.13 mag in therband and exhibited an initial rapid decline of 4.05 ± 0.14 mag (100 d)−1from peak luminosity till ∼30 d. The photospheric phase is short, with the SN displaying bluer colours and a weak Hαabsorption component–features consistent with other luminous, short-photospheric phase Type II SNe. A distinct transition from the photospheric to the radioactive tail phase in theVband–as is common in hydrogen-rich Type II SNe–is not visible in SN 2021tsz, although a modest ∼1 mag drop is apparent in the redder filters. Hydrodynamic modelling suggests the luminosity is powered by ejecta-circumstellar material (CSM) interaction during the early phases (< 30 days). Interaction with 0.6 Mof dense CSM extending to 3100 Rreproduces the observed luminosity, with an explosion energy of 1.3 × 1051erg. The modelling indicates a pre-SN mass of 9 M, which includes a hydrogen envelope of 4 M, and a radius of ∼1000 R. Spectral energy distribution analysis and strong-line diagnostics revealed that the host galaxy of SN 2021tsz is a low-metallicity, dwarf galaxy. The low-metallicity environment and the derived high mass loss from the hydrodynamical modelling strongly support a binary progenitor system for SN 2021tsz. 
    more » « less
  3. Growing interconnect bandwidth demand in large datacenters requires energy-efficient optical transceivers that operate with four-level pulse amplitude modulation (PAM4) to enable high per-wavelength data rates. Further increases in bandwidth density is possible by leveraging wavelength-division multiplexing (WDM), which optical link architectures based on silicon photonic microring modulators (MRMs) and drop filters inherently enable. This paper presents high-speed PAM4 transmitter and receiver front-ends implemented in a 28nm CMOS process that are co-designed with these silicon photonic optical devices to enable energy-efficient operation. The transmitter utilizes an optical digital-to-analog converter (DAC) approach with two PAM2 AC-coupled pulsed-cascode high-swing voltage-mode output stages to drive the MRM MSB/LSB segments. A 3.42Vppd output swing is achieved when operating at 80Gb/s PAM4 with an energy efficiency of 3.66pJ/bit. The receiver front-end interfaces with a silicon-germanium avalanche photodiode (APD) and utilizes a low-bandwidth input transimpedance amplifier followed by continuous-time linear equalizer and variable-gain amplifier stages. Biasing the APD to realize a gain of 2 allows for -7dBm optical modulation amplitude (OMA) sensitivity at 56Gb/s PAM4 with a BER=10-4 and an energy efficiency of 1.61pJ/bit. Experimental verification of the full PAM4 transceiver at 50Gb/s operation shows -4.66dBm OMA sensitivity at a BER~4x10-4. 
    more » « less
  4. This paper describes an NSF (National Science Foundation) S-STEM-funded scholarship program, representing a collaborative five-year grant project among three prominent universities in the Southeast region of the United States. Its primary objective is to support dedicated scholars in graduating and finding a professional pathway. Each institution recruited a cohort of 15-20 scholars annually for three years. The project offers scholarships and provides curricular and cocurricular support to academically talented but financially challenged students in the computing disciplines, including Computer Science, Computer Engineering, Cybersecurity, and Information Technology majors, starting from their junior years. The program aims to impact 150 scholars, most of whom are underrepresented in computing. Scholars receive support throughout their graduation and beyond should they pursue graduate studies in a STEM (Science, Technology, Engineering, and Math) discipline at any of the three participating institutions. Besides funds, the program provides an expansive career pathway opportunity to each of its students, accompanied by various supporting services, a dedicated advising team, experiential learning offices, career services offices, and graduate schools. Supporting services include internship fairs, panel discussions with alumni, resume workshops, graduate school application workshops, and career fairs. The project brings together the unique collaboration of three institutions for each of its supported activities to significantly enhance the support and opportunities offered to its scholars and to conduct meaningful research studies that include significant-sized intersectional populations. 
    more » « less
  5. Domain experts play an important role in data science, as their knowledge can unlock valuable insights from data. As they often lack technical skills required to analyze data, they need collaborations with technical experts. In these joint efforts, productive collaborations are critical not only in the phase of constructing a data science task, but more importantly, during the execution of a task. This need stems from the inherent complexity of data science, which often involves user-defined functions or machine-learning operations. Consequently, collaborators want various interactions during runtime, such as pausing/resuming the execution, inspecting an operator's state, and modifying an operator's logic. To achieve the goal, in the past few years we have been developing an open-source system called Texera to support collaborative data analytics using GUI-based workflows as cloud services. In this paper, we present a holistic view of several important design principles we followed in the design and implementation of the system. We focus on different methods of sending messages to running workers, how these methods are adopted to support various runtime interactions from users, and their trade-offs on both performance and consistency. These principles enable Texera to provide powerful user interactions during a workflow execution to facilitate efficient collaborations in data analytics. 
    more » « less
  6. A new framework, called , for the combined study of both hard and soft transverse momentum sectors in high-energy proton-proton ( p p ) and proton-nucleus ( p A ) collisions is set up. A dynamical initial state is set up using the model with transverse locations of hotspots within each incoming nucleon. A hard scattering that emanates from two colliding hotspots is carried out using the Pythia generator. Initial state radiation from the incoming hard partons is carried out in a new module called , which includes the longitudinal location of initial splits. The energy-momentum of both the initial hard partons and their associated beam remnants is removed from the hot spots, depleting the energy-momentum available for the formation of the bulk medium. Outgoing showers are simulated using the generator, and results are presented for both cases, allowing for and not allowing for energy loss. First comparisons between this hard-soft model and single inclusive hadron and jet data from p p and minimum bias p Pb collisions are presented. Single hadron spectra in p p are used to carry out a limited (in number of parameters) Bayesian calibration of the model. Fair comparisons with data are indicative of the utility of this new framework. Theoretical studies of the correlation between jet p T and event activity at mid and forward rapidity are carried out. 
    more » « less
  7. An investigation of high-transverse-momentum (high- p T ) photon-triggered jets in proton-proton ( p p ) and ion-ion ( A A ) collisions at s N N = 0.2 and 5.02 TeV is carried out, using the multistage description of in-medium jet evolution. Monte Carlo simulations of hard scattering and energy loss in heavy-ion collisions are performed using parameters tuned in a previous study of the nuclear modification factor ( R A A ) for inclusive jets and high- p T hadrons. We obtain a good reproduction of the experimental data for photon-triggered jet R A A , as measured by the ATLAS detector, the distribution of the ratio of jet to photon p T ( X J γ ), measured by both CMS and ATLAS, and the photon-jet azimuthal correlation as measured by CMS. We obtain a moderate description of the photon-triggered jet I A A , as measured by STAR. A noticeable improvement in the comparison is observed when one goes beyond prompt photons and includes bremsstrahlung and decay photons, revealing their significance in certain kinematic regions, particularly at X J γ > 1 . Moreover, azimuthal angle correlations demonstrate a notable impact of bremsstrahlung photons on the distribution, emphasizing their role in accurately describing experimental results. This work highlights the success of the multistage model of jet modification to straightforwardly predict (this set of) photon-triggered jet observables. This comparison, along with the role played by bremsstrahlung photons, has important consequences on the inclusion of such observables in a future Bayesian analysis. Published by the American Physical Society2025 
    more » « less
  8. A combination of spin–orbit coupling and electron–electron interaction gives rise to a new type of collective spin modes, which correspond to oscillations of magnetization even in the absence of the external magnetic field. We review recent progress in theoretical understanding and experimental observation of such modes, focusing on three examples of real-life systems: a two-dimensional electron gas with Rashba and/or Dresselhaus spin–orbit coupling, graphene with proximity-induced spin–orbit coupling, and the Dirac state on the surface of a three-dimensional topological insulator. This paper is dedicated to the 95th birthday of Professor Emmanuel I. Rashba. 
    more » « less